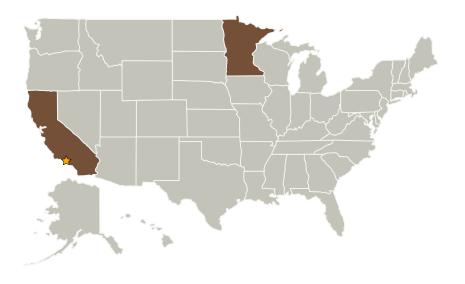
Small Business Innovation Research/Small Business Tech Transfer

Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase I



Completed Technology Project (2008 - 2008)

Project Introduction

High quality GaN epitaxial films are key to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices. In fact, solid state lighting, high-temperature and high-power electronics, microelectronic and mechanical sensors, and high-efficiency solar cells are all poised at a new level of development. This enormous market is waiting for low-cost, high quality substrates to achieve performance and fabrication economies of scale. This NASA SBIR phase I project addresses the development of a dislocation filter that can routinely prepare low-stress GaN thin films with threading dislocation densities below 1E7 cm-2. The method relies on using a low-angle ion beam to induce both nanofilter for defect reductions and to inhibit droplet formation at low growth temperatures. Dislocation densities have so far been determined by standard etch pit densities method. The goal the project to optimize the defect nanofilter to reduce the TD to less than 1E6 cm-2. To obtain a more practical evaluation of the effectiveness and commercial viability of the method, heterojunction field effect transistors with high electron mobility will be fabricated in these ultralow defect density films. These high-quality material based high electron mobility transistors (HEMTs) will enable high linearity power amplifiers with excellent thermal stability and frequency response. A plus would be if these were compatible with the mature silicon technology that is already in place. The new method to fabricate GaN-based high-performance devices on low defect substrates would be scalable to large area wafers, allowing the technology to be economical. The proposed method to grow on low-stress, low-dislocation density films will lead to the production of electronic devices of unparalleled performance.

Primary U.S. Work Locations and Key Partners

Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers, Phase I

Completed Technology Project (2008 - 2008)

Organizations Performing Work	Role	Туре	Location
	Lead Organization	NASA Center	Pasadena, California
SVT Associates	Supporting Organization	Industry	Eden Prairie, Minnesota

Primary U.S. Work Locations	
California	Minnesota

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Bentao Cui

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - ☐ TX08.1 Remote Sensing Instruments/Sensors
 - ☐ TX08.1.1 Detectors and Focal Planes